Porting COSMO_ to
Hybrid Archltectures\<

P Messmer5 T quulthess467

[1] Supercomputing Systems AG, [2] Swiss Federal Office of Mete(
[3] Center for Climate Systems Modeling, ETH Zurlch [4 j
[5] NVIDIA Corp., [6] Institute for Theoretical Ph;}ﬁ:

Programming weather, cllmat and earth 3 /stem models

on heterogeneous multa‘core platforms

Sept 12 - 13, 2_0.12, NCAR, Boulder, CO
s

CSCS “0‘

Federal Department e Affairs FOHA Swiss Nalional Supercomputing Cenlre ‘
Federal Office olwdooyandcnm tology MeteoSwiss g

http://www.ethz.ch/index_EN
http://www.ethz.ch/index_EN

Why Improving COSMO?

COSMO: Consortium for Small-Scale Modeling
Limited-area climate model - http://www.cosmo-model.org/
Used by 7 weather services and O(50) universities and research institutes

* High CPU usage @ CSCS (Swiss National Supercomputing Center)
* 30 Mio CPU hours in total
* ~ 50% on a dedicated machine D, el e

NMABh tRm)

-

* Strong desire for improved simulation quality

-

Still in plan g/p ent phas:

¥ .‘: IMGW (Warsawa, Poland):
. . o 4 :' SGI Orif g 3500
¢ Higher resolution Ty > WM
¢ Larger ensemble simulations LR Lok I'
. . Cr yXT4IS(SZOSMO—7and - > " -
® Increasing model complexity LA

IBM pwr5: up to 160 of 512
des at CINECA

° og o _ [, 1= S UsAM (Rome, Italy): 5 . .
- Performance improvements are critical! ﬁl sl oG o v
— member-state time-critical

System in preparation
ARPA-SIM (Bologna, Italy): ¥ Shis applicatio

Linux-Intel x86-64 Cluster for
testing (uses 56 of 120 cores; HNMS (Athens, Greece):

IBM pwrd: 120 of 256 nades

http://www.cosmo-model.org/
http://www.cosmo-model.org/
http://www.cosmo-model.org/

e e <>X NV IDIA

Resolution is of key importance
to increase simulation quality

2x resolution = 10x
computational cost

Reality

COSMO port to hybrid architectures is
part of HP2C Project

« Part of the Swiss HPCN strategy (hardware / infrastructure / software)
« Strong focus on hybrid architectures for real world applications
» 10 Projects from different domains - http://www.hp2c.ch/
Cardiovascular simulation (EPFL)
Stellar explosions (University of Basel)
Quantum dynamics (University of Geneva)

* COSMO-CCLM
1. Cloud resolving climate simulations (IPCC AR5)

2. Adapt existing code (hybrid, 1/O)
3. Aggressive developments (different programming languages, GPUSs)

http://www.hp2c.ch/

Refactoring Approach

Physics Dynamics
Large group of developers * Small group of developers
Plug-in code from other models * Memory bandwidth bound
Less memory bandwidth bound * Complex stencils (IJK-dependencies)
Simpler stencils (K-dependencies) * 60% of runtime

20% of runtime
—> Aggressive rewrite in C++
- Keep source code (Fortran) - Development of a stencil library

- GPU port with directives (OpenACC) —> Still single source code multiple library
B Assimilation Lines of Code Runtime back-ends for x86 / GPU

DO k =1, ke
DO j = jstart, jend

DO i = istart, iend

loop-logic update-function / stencil

* Loop-logic: Defines stencil application domain

¢ Platform dependent
* Update-function: Expression evaluated at each location
¢ Platform independent

=> Treat two components separately

Loop-Logic expressed in Domain Specific

Language (DSL)
| DSL o0p definiiion_

Define embedded c.Iomain specific Library loop objects
language in C++ using type
system/te.mplfate metaprogramming ApplyBlocks
* Code is written as type CUDA
Type is translated into sequence of v 5
o.perations (DSL compilation) at compile OpenMP
time Compiler
Operation objects (“code fragments”) are
inserted at compile time (code generation) L 0O Block
¢ Pre-packaged loop objects for CPU and OOp~Versioc
GPU ApplyBlocks C U DA
CUDA
’ OpenMP
LoopOverBlock
* We use this approach to generate the CUDA
platform dependent loop-logic)

Putting it all together..

IJKRealField laplacian, pressure;
Stencil stencil;
StencilCompiler: :Build(
stencil,
"Example",
calculationDomainSize,
StencilConfiguration<Real, BlockSize<32,4> >(),

define sweep<KLoopFullDomain> (

define_stages (
StencilStage<LapStage, IJBoundary<cComplete,0,0,0,0> >()

DO k =1, ke
DO j = jstart, jend

DO i = istart, iend
stencil.Apply () ;

s <>X NVIDIA.

enum { data, lap };

template<typename TEnv>
struct LapStage

{
STENCIL STAGE (TEnv)

STAGE_PARAMETER (FullDomain, data)
STAGE_PARAMETER (FullDomain, lap)

static void Do (Context ctx, FullDomain)
{
ctx[lap::Center()] =
-4.0 * ctx[data::Center ()] +
ctx[data: :At(iplusl)] +
ctx[data: :At(iminusl)] +
ctx[data: :At(jplusl)] +
ctx[data: :At(jminusl)];

Coarse grained
parallelism

Stencil Library Parallelization x

Shared memory parallelization 1J plane
Support for 2 levels of parallelism
Coarse grained parallelism
Split domain into blocks
* Distribute blocks to CPU cores

* No synchronization & consistency
required

* Fine grained parallelism
¢ Update block on a single core
¢ Lightweight threads / vectors
® Synchronization & consistency required

Fine grained
parallelism
~— (vectorization)

~ CUDA programming model
(should be a good match for other platforms as well)

GPU Backend Overview

Storage / _ CUDA grid splits 1J

IJK storage order plane into blocks
Coalesced reads in | direction
Parallelization

Parallelize in IJ dimension (blocks
are mapped to CUDA blocks)

* Block boundary elements are
updated using additional warps

* Data field indexing

¢ Store data field pointers and
strides in shared memory

¢ Store indexes in registers

Block with
boundary

— (use additional
boundary warps)

EEEE
Bl

| AVOVQNQW |

. SVOVQVOW |

HP2C Dycore Performance

CPU / OpenMP Backend
Factor 1.6x - 1.7x faster than the standard COSMO implementation
Here: no SSE support (expect another 10% ~30% improvement)

GPU / CUDA backend

Tesla M2090 (150 GB/s with ECC enabled) is roughly a factor 2.6x faster
than Interlagos (16-Core Opteron CPU with 52 GB/s)

* Ongoing performance optimization

GPU HP2C (Tesla C 209 () |

CPU HP2C (Interlagos) |

| |
CPU Fortran (Interlagos) I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Acceleration of Physical Parametrizations:
Current State

Parametrizations : processes not described by the dynamics, such as radiation or turbulence.
Account for about 20 to 25 % of total runtime

GPU versions of the parametrizations have been implemented in COSMO

Currently implemented and tested physics:
® Microphysics (Reinhardt and Seifert, 2006)
Radiation (Ritter and Geleyn, 1992)
® Turbulence (Raschendorfer, 2001)
* Soil (Heise, 1991)

* Account for 90-95% of physics in typical COSMO-2 run

* Only options for operational runs are supported
¢ Unsupported features have been documented

Directives/Compiler choices for OPCODE

OpenAcc: Open standard, supported by 3 compiler vendors PGlI, Cray, Caps
Directives of choice for final OPCODE version
CAPS: Future approach

PGl proprietary:
Enabled port of all kernels (some workarounds required)
First implementation of the physics
Translation to OpenAcc relatively straight forward

I$acc parallel loop vector_length(N)
do i=1,N

a(i)=b(i)+c(i)
end do
=> Testing code with different compilers can be very helpful! ISacc end parallel loop

Implementation in COSMO

Change to block data structure inside the physics
f(i,j,k) -> f_b(nproma,ke), with nproma = istartpar x iendpar / nblock.
nblock=1 for GPU run)

Physics loop restructured to iterate over blocks

transfer from CPU to GPU (ijk data f(i,j,k))
Istart block loop
do ib=1,nblock
call copy_to block Required data on the GPU

call organize_gsc_p _ All operations on grid data computed on the GPU
call organize_radiation = Physics timing region

call organize_turbulence
call organize_saoill
call copy_back

end do o : o
transfer back GPU to CPU (ijk data f(ij,k)) B inside physics scheme data is in block form

f _b(nproma,ke)

Porting Strategy for Parametrizations

.

»

»

Most loop structures unchanged, one only adds directives
In some parts: loop restructuring to reduce kernel call overheads, and profit from cache reuse.

Remove NEC vector-optimization.

I$acc data present(a,c1,c2)
Ivertical loop
do k=2,Nz
lwork 1
I$acc parallel loop vector_length(N)
do ip=1,nproma
c2(ip)=cl(ip,k)*a(ip,k-1)
end do
I$acc end parallel loop
lwork 2
I$acc parallel loop vector_length(N)
do ip=1,nproma
a(ip,k)=c2(ip)*a(ip,k-1)
end do
I$acc end parallel loop
end do
I$acc end data

I$acc data present(a,cl)
I$acc parallel loop vector_length(N)
do ip=1,nproma
Ivertical loop
do k=2,Nz
lwork 1

c2=cl(ip,k)*a(ip,k-1)
lwork 2
a(ip,k)=c2*a(ip,k-1)
end do
end do
I$acc end parallel loop
I$acc end data

Remove Fortran automatic arrays in subroutines which are often called (to avoid call to cudamalloc)

Data regions to avoid CPU-GPU transfer
Use profiler to target specific parts which need further optimization: reduce memory usage, replace

intermediate arrays with scalars ...

GPU/CPU comparison

CPU - original physics GPU - block physics ™
16 cores (interlagos) - using MPI 1 core + 1 GPU (X2090)

T(k=59): Temperature [K]

0 40 60 80 100 120 0o 40 60 80 100 120
mean = 284.923 min/max = 267.411 / 294.03 mean = 284.923 min/max = 267.411 / 294.03

Time physics: 42.4 s Time physics: 12.5 s
(average time, without communication)

Benchmark subdomain 128x112x60, 1h simulation with microphysics, radiation, turbulence and soil
¢ CPU-GPU results agree within roundoff error

GPU/CPU comparison, detail timing

Original Block Physics
CPU time (s) GPU time (s)
16 cores (Interlagos) 1 core + 1 GPU (X2090)

Microphysics 15.7 (37%) 2.3 (18%)

Test subdomain 128x112x60, 1h simulation

Currently running the block physics code on CPU (i.e. ignoring directives) is slower (total physics = 53 s).
This is due to the GPU-loop reordering optimizations, not to the block structure. Having a single source
code that runs efficiently on x86-CPU (i.e. excluding NEC) and GPU will require further work.

The GPU code runs 7% faster on CASTOR (C2090)

Summary and next steps

Dycore ported using portable stencil library and DESL
Physics ported using directives

<AANviDIA

Dycore speedup of ~4x vs original code
Physics speedup of ~3.4x vs original code

Dycore speedup for relevant domain sizes retained for
K20/SandyBridge

* Ongoing: Combining Dycore, Physics and Messaging Layer

Y
OAY

PUERASNOCEN A

<A NVIDIA.

i
SAAAAA AR A s
OO

L5 04

sEAR R ’ ’
AARBBE PR AN R R RB NI AR NN A

pmessmer@nvidia.com

e <X NVIDIA

Resolution is of key importance
to increase simulation quality

2x resolution = 10x
computational cost

